دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تحلیل و بررسی ویرایش: نویسندگان: Krasnov, M. L. & Kiselev, A. I. & Makarenko, G. I. & Shikin, E. V. سری: ISBN (شابک) : 5930002715 ناشر: سال نشر: تعداد صفحات: 676 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 24 مگابایت
در صورت تبدیل فایل کتاب [Vol. II] Mathematical Analysis for Engineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب [جلد II] تجزیه و تحلیل ریاضی برای مهندسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface 11 Chapter 13 Number Series 13 34 Definition. Sum of a Series 13 13.2 Operations on Series 15 13.3 Tests for Convergence of Series 18 13.4 Alternating Series. Leibniz Test 30 13.5 Series of Positive and Negative Terms. Absolute and Conditional Convergence 32 Exercises 35 Answers 37 Chapter 14 Functional Series 38 14.1 Convergence Domain and Convergence Hnterval 38 14.2 Uniform Convergence 49 14.3 Weierstrass Test 43 14.4 Properties of Uniformly Convergent Functional Series 45 Exercises 50 Answers 50 Chapter 15 Power Series 51 15.1 Abel’s Theorem. Interval and Radius of Convergence for Power Series 41 15.2 Properties of Power Series 56 15.3 ‘Taylor's Series 59 : Exercises 70 Answers 7} Chapter 16 Fourier Series 73 16.1 Trigonometric Series 73 16.2 Fourier Series for a Function with Period 2 76 16.3 Sufficient Conditions for the Fourier Expansion of a Function 78 16.4 Fourier Expansions of Odd and Even Functions 82 16.5 Expansion of a Function Defined on the Given Interval into a Series of Sines and Cosines 86 16.4 Fourier Series for a Function with Arbit rary Period 88 16.7 Complex Representation of Fourier Series 93 16.8 Fourier Series in General Orthogonal Systems of Func- tions @ Exercises 104 Answers 105 hapter 17 First-Order Ordinary Differential Equations 106 V7.4 Basic Notions. Examples 106 2 Saiution of the Cauchy Problem for First-Order Differential Equations 109 7.3 Approximate Methods of Integration of the Equation yi = fix y) 13 17.4 Some Equations Integrable by Quadratu res il8 175 Riccati Equation 135 IhG Differential Equations Insolvable for the Derivative 136 1h? Ceometrical Aspects of First -Orde r Diffe rential Equa- Hens. Orthogonal Traje ctori es 142 Exercises 144 Answers 145 Chapter 18 Higher-Order Differential Equations 147 18.1 Cauchy Problem [47 1B.2 Reducing the Order of Higher-Order Equations 149 18.4 Linear Homogeneous Differential Equations of Order a 153 18.4 Linearly Dependent and Linearly Inde pendent Systems af Functions 155 18.5 Structure of General Solution of Linea r Homogencous Differential Equation 160 Linear Homogeneous Differential Equations with Constant Coefficients 164 Equations Reducible to Equations with Constant Coefficients 172 Linear Inhomogeneous Differential Equations 173 Integration of Linear Inhomogeneous Equation by Var- iation of Constants 176 18.10 inhomogeneous Linear Differential Equations with Constant Coefficients 180 o (8.41 Integration of Differential Equation s Using Rowet Series and Generalized Power Series 188 7 16.12 Bessel Equation. Bessel Functions 190 Exercises 201 Answers 208 Chapter 19 Systems of Different al Equations 203 19.1 Essentials. Definition s 203 19.2 Methods of Integra lion of Systems of Differential Equations 206 19.3 Systems of Linear Differential Equations 211 19.4 Systems of Linear Differential Equations With Con- stant Coefficients 21 p Exercises 224 Answers 224 Chapter 20 Stability Theory 225) , 20.1 Preliminaries 225 20.2 Stability in the Sense of Lyapunov. Basic Concepts and Definitions 227 20.3 Stability of Autonomous Systems. Simplest Types of Stationary Points 23 A. 20.4 Method of Lyapuno v's Functions 244 20,5 Stability in First (Linear) Approximation 248 Exercises 253 Answers 254 . Chapter 21 Special Topics of Di {ferential Equations 255 24.1 Asymptotic Behavio ur of Solutions of Differential Equations as x + 255 21.2 Perturbation Method 257 21.3 Oscillations of Solutions of Differential Equations 261] Exercises 264 Answers 264 Chapter 22 Multiple Integrals. Double Integral 265 22.1 Problem Leading to the Concept of Double Integral 265 22.2 Main Properties of Double Integral 268 22.3 Double Integral Reduced to Iterated Integral 270 22.4 Change of Variables in Double Integral 278 22.5 Surface Area. Surface Integral 286 22.6 Triple Integrals 292 22.7 Taking Triple Integral in Rectangular Coordinates 294 22.8 Taking Triple Integral in Cylindr ical and Spheric al Coordinates 296 22.9 Applications of Double and Triple integrals 302 22.10 Improper Multiple ntegrals over Unbounded Domains 307 Exercises 309 Answers 312 8 Contents Chapter 23 Line Integrals 313 23.1 Line Integrals of the First Kind 313 23.2 Line Integrals of the Second Kind 318 23.3 Green’s Formula 322 23.4 Applications of Line Integrals 327 Exercises 331 Answers 333 Chapter 24 Vector Analysis 334 24.1 Sealar Field. Level Surfaces and Curves. Directiona! Derivative 334 24.2 Gradient of a Scalar Field 339 24.3 Vector Field. Vector Lines and Their Differential Equa- tions 344 24.4 Vector Flux Through a Surface and Its Properties 349 24,5 Flux of a Vector Through an Open Surface 354 24.6 Flux of a Vector Through a Closed Surface. Ostrograd- sky-Gauss Formula 363 24.7 Divergence of a Vector Field 371 24.8 Circulation of a Vector Field. Curl of a Vector. Stokes Theorem 378 24.9 Independence of the Line Integral of Integration Path 386 24.10 Potential Field 391 24.11 Hamiltonian 398 24.12 Differential Operations of the Second Order. Laplace Operator 402 2413 Curvilinear Coordinates 406 24.14 Basic Vector Operations in Curvilinear Coordinates 408 Exercises: 416 Answers 419 Chapter 25 Integrals Depending on Parameter 420 25.4 Proper Integrals Depending on Parameter 420 25.2. Improper Integrals Depending on Parameter 425 25.3 Euler Integrals. Gamma Function. Beta Function 431 Exercises 436 Answers 438 Chapter 26 Functions of a Complex Variable 441 - 26.1 Essentials. Derivative. Cauchy-Riemann Equations 44] 26.2 Elementary Functions of a Complex Variable 453 26.3 Integration with Respect to a Complex . Argument. Cauchy Theorem. Cauchy Integral Formula 461 26.4 Complex Power Series. Taylor Series 476 Contents 26.5 Laurent Series. Isolated Singularities and Their Classifi- cation 491 26.6 Residues. Basic Theorem on Residues. Application of Residues to Integrals 503 Exercises 519 Answers 522 Chapter 27 Integral Transforms. Fourier Transforms 424 ; 27.1 Fourier Integral 524 27.2 Fourier Transform, Fourier Sine and Cosine Transforms 528 27.3 Properties of the Fourier Transform 535 27.4 Applications 539 27,5 Multiple Fourier Transforms 543 Exercises 544 : Answers 545 Chapter 28 Laplace Transform 546 : 28.1 Basic Definitions 546 28.2 Properties of Laplace Transform 551 28.3 Inverse Transform 560 28.4 Applications of Laplace Transform (Operational Cal- culus) 565 Exercises 372 Answers 573 Chapter 29 Partial Differential Equations 575 29.4 Essentials. Examples 575 29.2 Linear Partial Differential Equations. Properties of Their Solutions 577 29.3 Classification of Second~ Order Linear Differential Equations in Two Independent Variables 579 Exercises 583 Answers 584 Chapter 30 Hyperbolic Equations 585 30.1 Essentials 585 30.2 Solution of the Cauchy Problem (fnitial Value Problem) for an Infinite String 587 30.3 Examination of the D’Alembert Formula 591 30.4 Well-Posedness of a Problem. Hadamard’s Example of Hi-Posed Problem 594 30.5 Free Vibrations of a String Fixed at Both Ends. Fourier Method 598 | 30.6 Forced Vibrations of a String Fixed at Both Ends 606 30.7 Forced Vibrations-of a String with Unfixed Ends 61] 30.8 General Scheme of the Fourier Method 613 30.9 ‘Uniqueness of Solution of a Mixed Problem 621 JG.10 Vibrations of a Round Membrane 623 FOUL Application of Laplace Transforms to Solution, of Mixed Problems 627 Exercises 60 Answers 632 Chapler 3] Parabolic Equations 633 3h Heat Equation 633 SEZ Cauchy’ Problera for Heat Equation 634 313 Heat Propagation in a Finite Rod 640 Fd Fourier Method Por Heat Equation 643 Exercises 649 Answers 649 Chapler 32 Elliptic Equations 656 32.1 Definitions. Formulation of Boundary Problems 650 32.2 Fundamental Solution of Laplace Equation 652 32.3 Green's Formulas 653 324 Basic Integral Creen’s Formula 654 42.5 Properties of Harmonic Functions 657 : 52.6 Solution of the Mirichlet Problem for a Circle Using the Fourier Method 661 32.7 Poisson: Integral 664 Exercises 666 Answers 666 Appendix TI Conformal Mappings 667 index 6o4